scenario 4: break down into multiple files

This commit is contained in:
illustris 2026-01-11 06:39:27 +05:30
parent 25f47e017d
commit 51ab2ed553
Signed by: illustris
GPG Key ID: 56C8FC0B899FEFA3
9 changed files with 504 additions and 310 deletions

View File

@ -1,15 +1,14 @@
CC = gcc CC = gcc
CFLAGS = -O2 -Wall CFLAGS = -O2 -Wall
all: cache_demo list_vs_array TARGETS = matrix_col_major matrix_row_major list_scattered list_sequential array_sum
cache_demo: cache_demo.c all: $(TARGETS)
$(CC) $(CFLAGS) -o $@ $<
list_vs_array: list_vs_array.c %: %.c
$(CC) $(CFLAGS) -o $@ $< $(CC) $(CFLAGS) -o $@ $<
clean: clean:
rm -f cache_demo list_vs_array rm -f $(TARGETS)
.PHONY: all clean .PHONY: all clean

View File

@ -26,25 +26,49 @@ Key concepts:
- **Temporal locality**: Recently accessed data is likely to be accessed again - **Temporal locality**: Recently accessed data is likely to be accessed again
## Files ## Files
- `cache_demo.c` - Row-major vs column-major 2D array traversal - `matrix_col_major.c` - BAD: Column-major traversal (cache-hostile)
- `list_vs_array.c` - Array vs linked list traversal - `matrix_row_major.c` - GOOD: Row-major traversal (cache-friendly)
- `list_scattered.c` - BAD: Scattered linked list (worst cache behavior)
- `list_sequential.c` - MEDIUM: Sequential linked list (better, but still has overhead)
- `array_sum.c` - GOOD: Contiguous array (best cache behavior)
## Exercise 1: Row vs Column Major ## Setup
### Step 1: Build and run
```bash ```bash
make cache_demo make all
./cache_demo
``` ```
You should see column-major is significantly slower (often 3-10x). ---
### Step 2: Measure cache misses ## Exercise 1: Row-Major vs Column-Major Matrix Traversal
### Step 1: Run the BAD version (column-major)
```bash ```bash
perf stat -e cache-misses,cache-references,L1-dcache-load-misses ./cache_demo ./matrix_col_major
``` ```
Compare the cache miss counts and ratios. Note the execution time.
### Step 2: Profile to identify the issue
```bash
perf stat -e cache-misses,cache-references,L1-dcache-load-misses ./matrix_col_major
```
Observe the high cache miss rate and count.
### Step 3: Run the GOOD version (row-major)
```bash
./matrix_row_major
```
This should be significantly faster (often 3-10x).
### Step 4: Profile to confirm the improvement
```bash
perf stat -e cache-misses,cache-references,L1-dcache-load-misses ./matrix_row_major
```
Compare the cache miss counts and ratios with the column-major version.
### Why does this happen? ### Why does this happen?
@ -67,20 +91,51 @@ Cache: [█_______________] ← load entire line, use 1 int, evict
[█_______________] ← repeat for each access [█_______________] ← repeat for each access
``` ```
## Exercise 2: Array vs Linked List ---
### Step 1: Build and run ## Exercise 2: Data Structure Memory Layout
### Step 1: Run the WORST case (scattered linked list)
```bash ```bash
make list_vs_array ./list_scattered
./list_vs_array
``` ```
### Step 2: Measure cache behavior Note the execution time - this is the worst case.
### Step 2: Profile the cache behavior
```bash ```bash
perf stat -e cache-misses,cache-references ./list_vs_array perf stat -e cache-misses,cache-references ./list_scattered
``` ```
### Three cases compared: Observe the terrible cache miss rate due to random memory access.
### Step 3: First improvement - sequential allocation
```bash
./list_sequential
```
This should be faster than scattered, as nodes are contiguous in memory.
### Step 4: Profile the improvement
```bash
perf stat -e cache-misses,cache-references ./list_sequential
```
Cache behavior improves, but still not optimal due to pointer chasing.
### Step 5: Best solution - contiguous array
```bash
./array_sum
```
This should be the fastest by a significant margin.
### Step 6: Profile the optimal case
```bash
perf stat -e cache-misses,cache-references ./array_sum
```
Compare all three cache miss counts:
| Case | Memory Layout | Cache Behavior | | Case | Memory Layout | Cache Behavior |
|------|---------------|----------------| |------|---------------|----------------|
@ -88,17 +143,22 @@ perf stat -e cache-misses,cache-references ./list_vs_array
| List (sequential) | Contiguous (lucky!) | Good - nodes happen to be adjacent | | List (sequential) | Contiguous (lucky!) | Good - nodes happen to be adjacent |
| List (scattered) | Random | Terrible - every access misses | | List (scattered) | Random | Terrible - every access misses |
### Why "sequential list" is still slower than array: ### Why linked lists are slow
1. **Pointer chasing**: CPU can't prefetch next element (doesn't know address) Even with sequential allocation, linked lists are slower than arrays:
1. **Pointer chasing**: CPU can't prefetch next element (doesn't know address until current node is loaded)
2. **Larger elements**: `struct node` is bigger than `int` (includes pointer) 2. **Larger elements**: `struct node` is bigger than `int` (includes pointer)
3. **Indirect access**: Extra memory load for the `next` pointer 3. **Indirect access**: Extra memory load for the `next` pointer
---
## Exercise 3: Deeper perf Analysis ## Exercise 3: Deeper perf Analysis
### See more cache events ### See more cache events
```bash ```bash
perf stat -e cycles,instructions,L1-dcache-loads,L1-dcache-load-misses,LLC-loads,LLC-load-misses ./cache_demo perf stat -e cycles,instructions,L1-dcache-loads,L1-dcache-load-misses,LLC-loads,LLC-load-misses ./matrix_col_major
perf stat -e cycles,instructions,L1-dcache-loads,L1-dcache-load-misses,LLC-loads,LLC-load-misses ./matrix_row_major
``` ```
Events explained: Events explained:
@ -110,12 +170,14 @@ Events explained:
### Profile with perf record ### Profile with perf record
```bash ```bash
perf record -e cache-misses ./cache_demo perf record -e cache-misses ./matrix_col_major
perf report perf report
``` ```
This shows which functions cause the most cache misses. This shows which functions cause the most cache misses.
---
## Discussion Questions ## Discussion Questions
1. **Why doesn't the compiler fix this?** 1. **Why doesn't the compiler fix this?**

View File

@ -0,0 +1,65 @@
/*
* GOOD: Contiguous Array Traversal
* =================================
* This program uses a contiguous array for excellent cache locality.
* The CPU prefetcher can predict sequential access patterns.
*
* Compile: make array_sum
* Run: ./array_sum
* Profile: perf stat -e cache-misses,cache-references ./array_sum
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define N 10000000 /* 10 million elements */
double get_time(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_sec + ts.tv_nsec / 1e9;
}
long sum_array(int *arr, int n) {
long sum = 0;
for (int i = 0; i < n; i++) {
sum += arr[i];
}
return sum;
}
int *create_array(int n) {
int *arr = malloc(n * sizeof(int));
if (!arr) {
perror("malloc array");
exit(1);
}
for (int i = 0; i < n; i++) {
arr[i] = i % 100;
}
return arr;
}
int main(void) {
printf("Contiguous Array Traversal (%d elements)\n", N);
printf("Sequential memory access - CPU prefetcher works perfectly.\n\n");
printf("Creating array...\n");
int *arr = create_array(N);
/* Warm up */
sum_array(arr, N);
double start = get_time();
long result = sum_array(arr, N);
double elapsed = get_time() - start;
printf("Array sum: %ld in %.4f seconds\n\n", result, elapsed);
printf("To see cache behavior, run:\n");
printf(" perf stat -e cache-misses,cache-references ./array_sum\n");
free(arr);
return 0;
}

View File

@ -1,109 +0,0 @@
/*
* Scenario 4: Cache Misses - Memory Access Patterns
* ==================================================
* This program demonstrates the performance impact of memory access patterns.
* Row-major vs column-major traversal of a 2D array.
*
* Compile: gcc -O2 -o cache_demo cache_demo.c
*
* EXERCISES:
* 1. Run: ./cache_demo
* 2. Profile: perf stat -e cache-misses,cache-references ./cache_demo
* 3. Why is one so much faster?
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#define ROWS 8192
#define COLS 8192
/*
* Global array to ensure it's not optimized away.
* This is a 64MB array (8192 * 8192 * sizeof(int) = 256MB if int is 4 bytes)
* Wait, that's too big. Let's use smaller dimensions or chars.
*/
/* Using static to avoid stack overflow */
static int matrix[ROWS][COLS];
double get_time(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_sec + ts.tv_nsec / 1e9;
}
long sum_row_major(void) {
/*
* Row-major traversal: access sequential memory addresses
* Memory layout: [0][0], [0][1], [0][2], ... [0][COLS-1], [1][0], ...
* This matches how C stores 2D arrays - CACHE FRIENDLY
*/
long sum = 0;
for (int i = 0; i < ROWS; i++) {
for (int j = 0; j < COLS; j++) {
sum += matrix[i][j];
}
}
return sum;
}
long sum_col_major(void) {
/*
* Column-major traversal: jump around in memory
* Access pattern: [0][0], [1][0], [2][0], ... [ROWS-1][0], [0][1], ...
* Each access is COLS * sizeof(int) bytes apart - CACHE HOSTILE
*/
long sum = 0;
for (int j = 0; j < COLS; j++) {
for (int i = 0; i < ROWS; i++) {
sum += matrix[i][j];
}
}
return sum;
}
void init_matrix(void) {
/* Initialize with some values */
for (int i = 0; i < ROWS; i++) {
for (int j = 0; j < COLS; j++) {
matrix[i][j] = (i + j) % 100;
}
}
}
int main(void) {
printf("Matrix size: %d x %d = %zu bytes\n",
ROWS, COLS, sizeof(matrix));
printf("Cache line size (typical): 64 bytes\n");
printf("Stride in column-major: %zu bytes\n\n", COLS * sizeof(int));
init_matrix();
double start, elapsed;
long result;
/* Warm up */
result = sum_row_major();
result = sum_col_major();
/* Row-major benchmark */
start = get_time();
result = sum_row_major();
elapsed = get_time() - start;
printf("Row-major sum: %ld in %.3f seconds\n", result, elapsed);
/* Column-major benchmark */
start = get_time();
result = sum_col_major();
elapsed = get_time() - start;
printf("Column-major sum: %ld in %.3f seconds\n", result, elapsed);
printf("\n");
printf("To see cache misses, run:\n");
printf(" perf stat -e cache-misses,cache-references,L1-dcache-load-misses ./cache_demo\n");
return 0;
}

View File

@ -0,0 +1,123 @@
/*
* BAD: Scattered Linked List Traversal
* =====================================
* This program creates a linked list with nodes scattered randomly in memory,
* simulating real-world fragmented allocation patterns.
* This causes terrible cache behavior due to random memory access.
*
* Compile: make list_scattered
* Run: ./list_scattered
* Profile: perf stat -e cache-misses,cache-references ./list_scattered
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <time.h>
#define N 10000000 /* 10 million elements */
struct node {
int value;
struct node *next;
};
double get_time(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_sec + ts.tv_nsec / 1e9;
}
/* Fast deterministic PRNG - much faster than rand() */
static uint64_t xorshift64_state = 42;
static inline uint64_t xorshift64(void) {
uint64_t x = xorshift64_state;
x ^= x << 13;
x ^= x >> 7;
x ^= x << 17;
xorshift64_state = x;
return x;
}
long sum_list(struct node *head) {
long sum = 0;
struct node *curr = head;
while (curr != NULL) {
sum += curr->value;
curr = curr->next;
}
return sum;
}
/*
* Create linked list with nodes scattered in memory (worst case for cache)
* Each node is allocated individually, then shuffled and linked randomly.
*/
struct node *create_list_scattered(int n) {
struct node **nodes = malloc(n * sizeof(struct node *));
if (!nodes) {
perror("malloc");
exit(1);
}
/* Allocate each node separately - they end up scattered in heap */
for (int i = 0; i < n; i++) {
nodes[i] = malloc(sizeof(struct node));
if (!nodes[i]) {
perror("malloc node");
exit(1);
}
nodes[i]->value = i % 100;
}
/* Shuffle the order (Fisher-Yates) to ensure random access pattern */
for (int i = n - 1; i > 0; i--) {
int j = xorshift64() % (i + 1);
struct node *tmp = nodes[i];
nodes[i] = nodes[j];
nodes[j] = tmp;
}
/* Link them in shuffled order */
for (int i = 0; i < n - 1; i++) {
nodes[i]->next = nodes[i + 1];
}
nodes[n - 1]->next = NULL;
struct node *head = nodes[0];
free(nodes); /* Free the pointer array, not the nodes */
return head;
}
void free_scattered_list(struct node *head) {
while (head != NULL) {
struct node *next = head->next;
free(head);
head = next;
}
}
int main(void) {
printf("Scattered Linked List Traversal (%d elements)\n", N);
printf("Each node allocated individually, then linked in random order.\n");
printf("This causes maximum cache thrashing.\n\n");
printf("Creating scattered linked list (this takes a while)...\n");
struct node *list = create_list_scattered(N);
/* Warm up */
sum_list(list);
double start = get_time();
long result = sum_list(list);
double elapsed = get_time() - start;
printf("Scattered list sum: %ld in %.4f seconds\n\n", result, elapsed);
printf("To see cache behavior, run:\n");
printf(" perf stat -e cache-misses,cache-references ./list_scattered\n");
free_scattered_list(list);
return 0;
}

View File

@ -0,0 +1,83 @@
/*
* MEDIUM: Sequential Linked List Traversal
* =========================================
* This program creates a linked list with nodes allocated contiguously,
* representing the best-case scenario for linked lists.
* Still slower than arrays due to pointer chasing overhead.
*
* Compile: make list_sequential
* Run: ./list_sequential
* Profile: perf stat -e cache-misses,cache-references ./list_sequential
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define N 10000000 /* 10 million elements */
struct node {
int value;
struct node *next;
};
double get_time(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_sec + ts.tv_nsec / 1e9;
}
long sum_list(struct node *head) {
long sum = 0;
struct node *curr = head;
while (curr != NULL) {
sum += curr->value;
curr = curr->next;
}
return sum;
}
/*
* Create linked list with nodes allocated sequentially (best case for list)
* All nodes allocated in one contiguous block, linked in order.
*/
struct node *create_list_sequential(int n) {
struct node *nodes = malloc(n * sizeof(struct node));
if (!nodes) {
perror("malloc list");
exit(1);
}
for (int i = 0; i < n - 1; i++) {
nodes[i].value = i % 100;
nodes[i].next = &nodes[i + 1];
}
nodes[n - 1].value = (n - 1) % 100;
nodes[n - 1].next = NULL;
return nodes;
}
int main(void) {
printf("Sequential Linked List Traversal (%d elements)\n", N);
printf("All nodes allocated contiguously - best case for linked list.\n");
printf("Still has pointer chasing overhead vs array.\n\n");
printf("Creating sequential linked list...\n");
struct node *list = create_list_sequential(N);
/* Warm up */
sum_list(list);
double start = get_time();
long result = sum_list(list);
double elapsed = get_time() - start;
printf("Sequential list sum: %ld in %.4f seconds\n\n", result, elapsed);
printf("To see cache behavior, run:\n");
printf(" perf stat -e cache-misses,cache-references ./list_sequential\n");
free(list);
return 0;
}

View File

@ -1,175 +0,0 @@
/*
* Scenario 4b: Array vs Linked List Traversal
* ============================================
* Arrays have excellent cache locality; linked lists do not.
* This demonstrates why "O(n) vs O(n)" can have very different constants.
*
* Compile: gcc -O2 -o list_vs_array list_vs_array.c
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define N 10000000 /* 10 million elements */
struct node {
int value;
struct node *next;
};
double get_time(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_sec + ts.tv_nsec / 1e9;
}
/* Sum array elements */
long sum_array(int *arr, int n) {
long sum = 0;
for (int i = 0; i < n; i++) {
sum += arr[i];
}
return sum;
}
/* Sum linked list elements */
long sum_list(struct node *head) {
long sum = 0;
struct node *curr = head;
while (curr != NULL) {
sum += curr->value;
curr = curr->next;
}
return sum;
}
/* Create array */
int *create_array(int n) {
int *arr = malloc(n * sizeof(int));
if (!arr) {
perror("malloc array");
exit(1);
}
for (int i = 0; i < n; i++) {
arr[i] = i % 100;
}
return arr;
}
/* Create linked list - nodes allocated sequentially (best case for list) */
struct node *create_list_sequential(int n) {
struct node *nodes = malloc(n * sizeof(struct node));
if (!nodes) {
perror("malloc list");
exit(1);
}
for (int i = 0; i < n - 1; i++) {
nodes[i].value = i % 100;
nodes[i].next = &nodes[i + 1];
}
nodes[n - 1].value = (n - 1) % 100;
nodes[n - 1].next = NULL;
return nodes;
}
/* Create linked list - nodes allocated randomly (worst case for cache) */
struct node *create_list_scattered(int n) {
/* Allocate nodes individually to scatter them in memory */
struct node **nodes = malloc(n * sizeof(struct node *));
if (!nodes) {
perror("malloc");
exit(1);
}
/* Allocate each node separately */
for (int i = 0; i < n; i++) {
nodes[i] = malloc(sizeof(struct node));
if (!nodes[i]) {
perror("malloc node");
exit(1);
}
nodes[i]->value = i % 100;
}
/* Shuffle the order (Fisher-Yates) */
srand(42);
for (int i = n - 1; i > 0; i--) {
int j = rand() % (i + 1);
struct node *tmp = nodes[i];
nodes[i] = nodes[j];
nodes[j] = tmp;
}
/* Link them in shuffled order */
for (int i = 0; i < n - 1; i++) {
nodes[i]->next = nodes[i + 1];
}
nodes[n - 1]->next = NULL;
struct node *head = nodes[0];
free(nodes); /* Free the pointer array, not the nodes */
return head;
}
void free_scattered_list(struct node *head) {
while (head != NULL) {
struct node *next = head->next;
free(head);
head = next;
}
}
int main(void) {
printf("Comparing array vs linked list traversal (%d elements)\n\n", N);
double start, elapsed;
long result;
/* Array */
printf("Creating array...\n");
int *arr = create_array(N);
start = get_time();
result = sum_array(arr, N);
elapsed = get_time() - start;
printf("Array sum: %ld in %.4f seconds\n", result, elapsed);
double array_time = elapsed;
free(arr);
/* Sequential linked list (best case for list) */
printf("\nCreating sequential linked list...\n");
struct node *list_seq = create_list_sequential(N);
start = get_time();
result = sum_list(list_seq);
elapsed = get_time() - start;
printf("List sum (sequential): %ld in %.4f seconds\n", result, elapsed);
double list_seq_time = elapsed;
free(list_seq);
/* Scattered linked list (worst case for cache) */
printf("\nCreating scattered linked list (this takes a while)...\n");
struct node *list_scat = create_list_scattered(N);
start = get_time();
result = sum_list(list_scat);
elapsed = get_time() - start;
printf("List sum (scattered): %ld in %.4f seconds\n", result, elapsed);
double list_scat_time = elapsed;
free_scattered_list(list_scat);
printf("\n--- Summary ---\n");
printf("Array: %.4fs (baseline)\n", array_time);
printf("List (sequential): %.4fs (%.1fx slower)\n",
list_seq_time, list_seq_time / array_time);
printf("List (scattered): %.4fs (%.1fx slower)\n",
list_scat_time, list_scat_time / array_time);
printf("\nTo see cache behavior:\n");
printf(" perf stat -e cache-misses,cache-references ./list_vs_array\n");
return 0;
}

View File

@ -0,0 +1,73 @@
/*
* BAD: Column-Major Matrix Traversal
* ===================================
* This program traverses a 2D matrix in column-major order,
* which causes poor cache utilization because C stores arrays in row-major order.
*
* Compile: make matrix_col_major
* Run: ./matrix_col_major
* Profile: perf stat -e cache-misses,cache-references,L1-dcache-load-misses ./matrix_col_major
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define ROWS 8192
#define COLS 8192
/* Using static to avoid stack overflow */
static int matrix[ROWS][COLS];
double get_time(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_sec + ts.tv_nsec / 1e9;
}
void init_matrix(void) {
for (int i = 0; i < ROWS; i++) {
for (int j = 0; j < COLS; j++) {
matrix[i][j] = (i + j) % 100;
}
}
}
/*
* Column-major traversal: jump around in memory
* Access pattern: [0][0], [1][0], [2][0], ... [ROWS-1][0], [0][1], ...
* Each access is COLS * sizeof(int) bytes apart - CACHE HOSTILE
*/
long sum_col_major(void) {
long sum = 0;
for (int j = 0; j < COLS; j++) {
for (int i = 0; i < ROWS; i++) {
sum += matrix[i][j];
}
}
return sum;
}
int main(void) {
printf("Matrix size: %d x %d = %zu bytes\n",
ROWS, COLS, sizeof(matrix));
printf("Cache line size (typical): 64 bytes\n");
printf("Stride per access: %zu bytes (jumps over entire row!)\n\n",
COLS * sizeof(int));
init_matrix();
/* Warm up */
sum_col_major();
double start = get_time();
long result = sum_col_major();
double elapsed = get_time() - start;
printf("Column-major sum: %ld in %.3f seconds\n\n", result, elapsed);
printf("To see cache misses, run:\n");
printf(" perf stat -e cache-misses,cache-references,L1-dcache-load-misses ./matrix_col_major\n");
return 0;
}

View File

@ -0,0 +1,73 @@
/*
* GOOD: Row-Major Matrix Traversal
* =================================
* This program traverses a 2D matrix in row-major order,
* matching how C stores 2D arrays in memory for excellent cache utilization.
*
* Compile: make matrix_row_major
* Run: ./matrix_row_major
* Profile: perf stat -e cache-misses,cache-references,L1-dcache-load-misses ./matrix_row_major
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define ROWS 8192
#define COLS 8192
/* Using static to avoid stack overflow */
static int matrix[ROWS][COLS];
double get_time(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_sec + ts.tv_nsec / 1e9;
}
void init_matrix(void) {
for (int i = 0; i < ROWS; i++) {
for (int j = 0; j < COLS; j++) {
matrix[i][j] = (i + j) % 100;
}
}
}
/*
* Row-major traversal: access sequential memory addresses
* Memory layout: [0][0], [0][1], [0][2], ... [0][COLS-1], [1][0], ...
* This matches how C stores 2D arrays - CACHE FRIENDLY
*/
long sum_row_major(void) {
long sum = 0;
for (int i = 0; i < ROWS; i++) {
for (int j = 0; j < COLS; j++) {
sum += matrix[i][j];
}
}
return sum;
}
int main(void) {
printf("Matrix size: %d x %d = %zu bytes\n",
ROWS, COLS, sizeof(matrix));
printf("Cache line size (typical): 64 bytes\n");
printf("Stride per access: %zu bytes (sequential!)\n\n",
sizeof(int));
init_matrix();
/* Warm up */
sum_row_major();
double start = get_time();
long result = sum_row_major();
double elapsed = get_time() - start;
printf("Row-major sum: %ld in %.3f seconds\n\n", result, elapsed);
printf("To see cache behavior, run:\n");
printf(" perf stat -e cache-misses,cache-references,L1-dcache-load-misses ./matrix_row_major\n");
return 0;
}